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It is well known that the lattice Boltzmann equation method (LBE) can model 
the incompressible Navier-Stokes (NS) equations in the limit where density 
goes to a constant. In a LBE simulation, however, the density cannot be con- 
stant because pressure is equal to density times the square of sound speed, hence 
a compressibility error seems inevitable for the LBE to model incompressible 
flows. This work uses a modified equilibrium distribution and a modified 
velocity to construct an LBE which models time-independent (steady) incom- 
pressible flows with significantly reduced compressibility error. Computational 
results in 2D cavity flow and in a 2D flow with an exact solution are reported. 

KEY WORDS: Lattice Boltzmann method; incompressible flows; steady 
flows. 

1. INTRODUCTION 

The lattice gas automata (LGA) and the lattice Boltzmann equation (LBE) 
methods have become alternative computational methods for studying 
transport phenomena. Since their appearance, numerical simulations have 
been performed yielding qualitatively correct results. Recently, more careful 
simulation and quantitative comparison with traditional methods have 
been done/~-3) These studies indicate that the LBE produces accurate 
results comparable with traditional methods. As an approximate model of 
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the Navier-Stokes equations, the LBE has two types of errors: errors due 
to the finite size of the lattice and errors due to compressibility effects. It 
is in the limit that lattice unit goes to zero (or lattice size goes to infinity) 
and Mach number (or velocity) does to zero that the LBE models the 
Navier-Stokes equations. For a given Math number, when the lattice unit 
is not too small, the error of the LBE is O(~ 2) in the lattice unit ~.(a. 4) As 
the lattice unit becomes smaller, the compressibility error becomes domi- 
nant and the error does not change much with refinement of the lattice. (3) 
To further reduce the error, one must first reduce the Mach number and 
reduce the lattice unit. On the other hand, if the Mach number (hence the 
velocity) is reduced, for a fixed lattice unit (limited by the computer size), 
one must decrease the viscosity to model a flow with given Reynolds 
number. But the decrease of viscosity is restricted by stability. Hence, it 
seems that the compressibility error is inevitable for the LBE. In this paper, 
a new LBE model-is proposed to reduce the compressibility error signi- 
ficantly for steady flows. Numerical simulations using the new model show 
improved accuracy. 

2. TWO-DIMENSIONAL SQUARE LATTICE BOLTZMANN 
MODEL 

The proposed model can be derived from any existing lattice 
Boltzmann equation with a BGK collision operator. To illustrate the 
derivation, we use a 2D square LBGK (the d2p9 model in ref. 5). A square 
lattice with unit spacing is used in which each node has eight nearest 
neighbors connected by eight links. There are two types of moving 
particles. Particles of type I move along the axes with speed e , =  
(cos[z~(i- 1)/2], s in[ to( i-  I)/2]), i =  1, 2, 3, 4, and particles of type 2 
move along the diagonal directions with speed e2 ;=v /2 (cos [n ( i - � 89  
s in[n( i - �89 i = 1 , 2 , 3 , 4 .  Rest particles with speed zero are also 
allowed at each node. The occupations of the three types of particles are 
represented by the single-particle distribution function, for(x, t), where the 
subscript a indicates the type of particle (0: rest; 1: type 1; 2: type 2) and 
i indicates the velocity direction (i = I, 2, 3, 4 for type 1 and type 2 par- 
ticles). The particle distribution function satisfies the following lattice 
Boltzmann equation with BGK collision operator written in physical units: 

f . i (x  + 6e.i, t+3)-f~i(x, t) = _ 1  [f~,i(x, t -- ,e(o), ) .,~,-tx, t)] 
T 

(1) 

where ~o;ft~ t) is the equilibrium distribution at x, t and z is the single 
relaxation time which fixes the rate of approach to equilibrium. We use a 
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small parameter 6 explicitly in the equation; it can be viewed as a time step 
(in physical units) in the simulation. Its value also represents the value of 
the length of a lattice link. The density per node, p, and the macroscopic 
velocity, u, are defined in terms of the particle distribution function by 

Z Z L , = p ,  Z y' f,,;e,,;= pu (2) 
~r i o" i 

The equilibrium distribution can be chosen in the following form for 
particles of each type (the model d2p9~5)): 

with 

f ~ o ~  

Jill(~ = ~p[lq_3(eli.u)+9(eli.~_ U)--- 5_ U" U ] 3  

f(o) 3~p[ l+3(e2i.u)+9(e2i.u)2_3u.u] 
2i  ~ 

(3) 

Zy'f~)=p, ZZf~,e~,=pu (4) 
ty i ~ i 

In the limit that the lattice units and the Mach number approach zero, the 
density and velocity satisfy the Navier-Stokes equation. The form of error 
terms and the derivation can be found in refs. 2, 6, and 7. The macroscopic 
equations derived from the LBGK model d2q9 are as follows: 

The continuity equation: 

a,p + v  .(pu) = 0 +  0(62) (5) 

The momentum equation: 

2 r -  1 
O ,(pu~,) + O a(pu,,u a) = - a~,( c~ p ) + --- i f - -  60 aE p( O~, u a + O au~) ] 

+O(Ju  3) + O(J 2) (6) 

where cs is the speed of sound and c~ = 1/3 for the model. For small Mach 
number and small lattice unit J, the terms O(Ju 3) + O(J 2) can be neglected. 
Thus, thus, the continuity equation has the exact form of the usual NS 
equations [with an error term O(J~-)], and the momentum equation (6) is 
very similar to but not exactly the same as the momentum equation of NS 
equations. The viscosity is [ ( 2 r - 1 ) / 6 ] J .  If the characteristic velocity of 
the flow to be simulated is U and the characteristic length is L which 
includes N lattice units, then 6 = L/N and the Reynolds number of the flow 
is Re= UL/v = 6UN/(2r- 1). In the incompressible limit, p ~ const and the 
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incompressible NS equations can be recovered by taking P=Po (a con- 
stant) except in the term where : G P represents the pressure. 

In the case of steady flow (consider steadiness during the derivation), 
the macroscopic equations of the LBGK with error term become 

V ' ( p u ) = O + O ( ~  2) (7) 

2 r -  1 
aa(pu~ua) = - G ( c ~ p )  +----if--Jap0p(pu~) + O(~ 2) (8) 

Notice that the term O(~u 3) in Eq. (6) does not appear, because it comes 
from a temporal derivative. Comparing to the exact from of the steady 
incompressible NS equations at constant density Po 

V" u = 0 (9) 

Op(u~,up)= -G  ~ + vappu~ (10) 

we see that terms containing the spatial derivative of p are neglected. For 
example, the continuity equation (7), V- (pu) = 0 gives pV. u + (Vp). u = 0. 
When this is used to approximate Eq. (9), the term (Vp). u is neglected. 
This term represents a compressibility error. Since the order of magnitude 
of Vp/p is O(M2), (~) where M is the Mach number, for a finite Mach 
number used in any simulation, a compressibility error appears. In a simula- 
tion of a 2D square cavity flow with a moving top by LBGK,12) we consider 
this error by investigating the stream function ~b(x, y): ~ = ~ -  Uy dx. For 
real, incompressible flow, the stream function should be zero at the walls; 
hence ~o L Uy dx --- 0, where L is the length of a side of the square cavity. In 
our simulation, however, ~o L uy dx ~ O, because of the compressibility error. 
We calculate the stream functions ~k(i, j )  on the lattice with i, j representing 
different nodes. The mean and maximum stream functions at the right edge 
of the cavity are defined, respectively, as 

S~=[Y~}~ (~Z(nx'J))] ~/: and Sm=max l~(n,.,j)[ 
ny J y 

where n,. = ny = 256 is the number of nodes in the x and y directions, 
respectively. An example of the error is presented in Table I, where U is the 
velocity of the top. The results show that S~ and S,, are proportional to 
M 2. We can use S, and S,, as quantitative measures of the compressibility 
error of the LBE method. When the lattice unit decreases, the com- 
pressibility error may dominate, c3" 8) 
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Table I. Compressibility Error for d2qg, Re= 100 

U 0.1 0.05 0.01 
M 0.173 0.0867 0.0173 
S~ 2.4x 10 -4 6.4x 10 -5 2.7x 10 -6 
S,. 6.7 x 10 -4 1.8 x 10 -4 8.1 x 10 -6 
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3. A N E W  LBGK M O D E L  FOR S T E A D Y  I N C O M P R E S S I B L E  
F L O W S  

In this section, a new L B G K  model, which greatly reduces com- 
pressibility error for steady flows, is proposed. As Frisch eta/. (9) pointed 
out, if one uses the mass current v = p u to represent the velocity, then in 
the steady state the continuity equation implies exactly V. v = 0, This for- 
malism was used in lattice gas au tomata  (see, for example, refs 10 and 11). 
I f  one uses v as the velocity, in the momentum equation, the viscous term 
is also exact, but  the nonlinear term is not  exactly equal to 0p(v~vp). In 
LGA, the nonlinear term can be approximated by [ g(Po)/Po] Op(v=vp) with 
a compressibility error from ignoring the change of  p in this term. In the 
lattice Boltzmann method,  however, the nonlinear term can be made exact 
by modifying the equilibrium distribution. The idea was used in ref. 12 to 
derive the exact form of the nonlinear term of the Burger's equation. We 
find that if the equilibrium distribution is chosen as 

f(o) , r  - ~  "v] oL =~LP v 

f(o)= ~[p + 3el,.v + 9 ( e l ; ' v ) 2 - - 3 v ' v ]  (11) 
l i  

f(o) = ~ [p  + 3e2i" v + 9(e~ i. v) 2 -  3 v.  v] 
2 i  

with 

S ~ ~cco) ~-'f(o)t= . =  /--aJGi = P ,  )-', v (12) . , ~  J ~rt  - c r t  

a i a i 

then using the L B G K  equation (1) with 

EEL,=p, E Ef ,e.,=v ( 1 3 )  
a i a i 

and using the same procedure as before, we find the macroscopic equations 
of  this new L B G K  model  for the steady case: 
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V" v = 0 + 0(62) (14) 

2 r -  1 
Op(v~vp) = -O~(c;p) + ~ 60pOpv= + 0(~ 2) (15) 

Apart from an error of 0(02) due to a finite lattice size, these are exactly 
the incompressible NS equations. The compressibility error induced by 
ignoring the change of density in the continuity equation and in some 
terms of the momentum equation no longer exists. Actually, it should be 
noted that the relevant fields for lattice Boltzmann methods are the 
momentum and pressure. The implementation of the new model (called 
d2q9i to be consistent with ref. 5) is almost the same as in the d2q9 model. 
For the 2D cavity flow, the boundary condition on the top is vx = U ( U is 
the velocity of the moving top) and on other three walls, v = 0 is obtained 
by using bounce-back conditions. 

It is noted that the present model is only for steady flows. It cannot 
be extended to unsteady flows. The major problem is that the temporal 
derivative of p in the continuity equation is nonzero; it is related to the 
temporal derivative of pressure and it cannot be easily handled. 

4. C O M P U T A T I O N A L  RESULTS 

We give a comparison of the modified model (d2q9i) and the original 
model (d2q9) in the 2D square driven cavity flow and in a flow which has 
an analytic solution. 

First, for d2q9i in 2D driven cavity flows, we use the following 
criterion to determine the steady state 

[ ~ ~ ,v,.(i,j, t + 2OO)-vx(i,j, t), 

IVy(i, j, t + 200) - vy(i, j, t)l 1 + 

~< 10-6 

where v v, vy are two components of the velocity v. The maximum value of 
the stream function at the right wall (defined as S,, in Table I) is shown in 
Table lI. The simulation is for nx=ny=256, U=0.1. We see the com- 
pressibility error in d2q9i is reduced drastically and the nonzero value of 
the stream function at the right wall is in the range of the numerical 
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Table II. Comparison of Compressibility 
Two Models 

Error S m 

M o d e l  R e  = 1 0 0  R e  = 1 0 0 0  

d 2 q 9  6 . 7 e - 4  3 . 2 e - 4  

d 2 q 9 i  6 . 8 e - 9  3 . 9 e - 9  

for 

4 1  

integration error and the roundoff error. (2) We also compare other 
quantities. Table III is a comparison of the stream function at vortex cen- 
ters (main, left, right) for the results by Ghia et al., c~3~ d2q9, and d2q9i. 
The results are very close. In the new model, the error term related to v 
does not appear explicitly, but the magnitude of v is restricted by stability 
considerations. Nevertheless, the restriction is much less severe than that in 
d2q9. We did an experiment to increase U while fixing r = 1 to increase the 
Reynolds number. For the new model, the result of major quantities such 
as the value of the stream functions at vortex centers and the location of 
vortex centers are good up to U=0.5. In contrast, U =  0.5 caues d2q9 to 
blow up. Hence, the new model is more robust. 

To give a more detailed comparison, we consider a flow with an analytic 
solution. We choose a periodic flow so that the error on boundary condition 
is not present. The flow is in a square region x ~ [0, 2z~], y ~ [0, 2z~], with 
x and y velocities and pressure given by 

I "~ u.~=uosinxsin y, Uy=UoCOSXCOSy, p = z p o u ~ ( c o s 2 x - c o s 2 y )  (16) 

where Uo, Po are constants. This is the exact solution of the steady incom- 
pressible NS equation with constant density Po and with a body force given 
by 

Fx = 2VUo sin x sin y, F v = 2VUo cos x cos y (17) 

Table III. Stream Function at Vortex Centers 

Re Model ~, main ~, left ~, right 

1 0 0  G h i a  0 . 1 0 3 4  - 1 . 7 5 e  - 6 - 1 . 2 5 e  - 5 

d 2 q 9  0 . 1 0 0 1  - 1 . 7 6 e -  6 - 1 . 1 4 e  - 5 

d 2 q 9 i  0 . 1 0 0 3  - 1 . 7 9 e  - 6 - 1 . 1 5 e  - 5 

1 0 0 0  G h i a  0 . 1 1 7 9  - 2 . 3 1 e - 4  - 1 . 7 5 e -  3 

d 2 q 9  0 . 1 1 7 8  - 2 . 2 2 e  - 4 - 1 . 6 9 e  - 3 

d 2 q 9 i  0 . 1 1 8 0  - 2 . 2 4 e  - 4 - 1 . 7 0 e -  3 
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To incorporate a body force in LBGK, we add a term in the LBGK 
model, Eq. ( 1 ): 

f~i(x + fie~f, t +r~)- f~(x ,  t )= --1 [ f~i(x, t ) - j~i tx, t) ] + 6g~g(x, (18) 

For d2q9, g~ is chosen as ~6) 

gox =0,  g l i  = �89 g 2 i  = I p e 2 i a F  ~ (19) 

so that 

~ g ~ , = 0 ,  ~ ~g~ie~,= pF,  ~'~'g~,ie~i~e~,ip=O 
o" i ~, i o" i 

where F is the body force. If we derive the macroscopic equation as before, 
an extra body force term pF~ will appear in the momentum equation (6). 
For d2q9i, g~i is chosen in a similar way but without p in the expression. 

To start the simulation, we first compute the equilibrium distribution 
by using u of the exact solution and using p = Po + p/c~ for d2q9 and 
P =P0 +P/(Po * c~) for d2qgi with c~.-2-1/3 and p given in Eq. (16). Then 
we set f ~ i = f ~  ) as the initial distribution. To determine if the steady state 
is reached, we use the following criterion: 

I ~ ~ [ux(i,j, t + l ) - u x ( i , j ,  t)[ 

+ [Uy(i,j, t+  1) -uy( i , j ,  t)l] 

~< ~. tolerance (20) 

The tolerance is chosen as 10- ~2 in most runs. In some runs, the tolerance 
is chosen as 10-s, but experience indicates that there is no difference in the 
error of velocity at the steady state. 

For R e =  100, Uo=0.1, /)0=2.7, we use both d2q9 and d2q9i to run 
the simulation to steady state. Then we compute L1 and L2 relative errors 
err~ and err2 of the steady velocity: 

err, =- Zi  ~j lu'~(i, j) -- u,.( i,j)[ + [u~,(i,j) -- uy(i,j)[ (21) 
~i  ~ j  [u~(i,j)[ + [uty(i,j)[ 
, . . . . .  , . . . . . . . .  }~/-' 

Z i  Z j  [ Ux(l,J) -- Ux(l,J) ]-  AI- [ Ul,(l,J) -- blytl, J) J - 

, . . ~  , . . ~  ( 2 2 )  err2 - Y'.i Z j  Ux(t,J)- + Uy(t,j)- 
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Fig. I. L2 errors of velocity for two models. 

t and t are the analytical solution. The L1 and L2 relative errors where u x Uy 
of steady pressure are defined as 

_~.~ ~,j Ip'( i , j)  -- p( i,j)] (23) err1 -  E ,  E j  Ip'(i,j)l 

~Z, Zj [pt(i,j)- p~i,j) ]2-~,,2 
err2 -  { -~--~j ~ j (24) 

where p'  is from the analytical solution given in Eq. (16). In d2qg, the 
pressure p is represented by c~(p-po) ,  while in d2q9i, we used that 

c~(p - Po) = Pl?o. 
The L2 relative error of velocity is shown in Fig. 1 (the behavior of the 

L1 error is similar). As the lattice size (number of lattice units on one side) 
increases from 8 to 256, the errors of d2q9 decrease initially as a second- 
order scheme.. r Then the error levels off as lattice unit becomes smaller 
and the compressibility error becomes dominant. In contrast, the error of 
d2q9i continues to decrease as lattice unit decreases. 

We also find that d2qgi is less sensitive to the magnitude of the 
velocity and has a slightly better stability behavior. We studied cases for 
which R e =  100, n x = n y =  128; po=2.7;  u0=0.1, 0.2, 0.4, 0.5, 0.6, 0.7, and 
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0.8; tolerance = 10 -8. The initial distribution is the equilibrium distribution 
computed from the density and velocity of  the analytical solution (we will 
refer to this later as initial distribution 1). The results for the L2 relative 
error of  velocity and pressure in the steady state are shown in Tables IV 
and V, respectively. The L2 error of  velocity and pressure in d2q9 increases 
as u0 increases, indicating a compressibility error. The velocity error in 
d2q9i decreases slightly as Uo increases from 0.1 to 0.4. Then it increases 
above Uo = 0.4. The rate of  increase of  the error is much smaller than that 
of d2q9, and the model d2q9i has no instability up to Uo = 0.7, indicating 
a slightly better stability behavior. The pressure error of  d2q9i increases as 
Uo increases; the increase is much slower than that in d2q9. Simulations 
for these parameters were performed also using for the initial distribution 
the equilibrium distribution computed from the density of  the analytical 
solution and zero velocity (this is called initial distribution 2). This initial 
distribution is much different from the steady-state distribution. The time 
steps required to reach the steady state with a tolerance of  10 -8 and for 
two different initial distributions are given in Table VI. It is seen that 
simulations with initial conditions closer to the steady-state solution reach 
the steady state faster. The case of  u0 = 0.8 for d2q9i is an interesting one. 
It reached the steady state for initial distribution 1 with a tolerance of  
10-8; but it did not reach the steady state for a tolerance of  10 -12. The 
minimum relative difference between the velocities at two consecutive time 
steps during the run was 9 .25e-11 .  However, if the initial distribution 2 
was used, the system did not reach the steady state even for a tolerance 
of  10 -8 . The minimum relative difference between the velocities at two 
consecutive time steps during the run was 1 . 2 6 e - 9  (still larger than 
ft. tolerance). For  the case of u 0 = 0.8, when the solution did not reach the 
steady state, it wandered away and became unstable. For  the case Uo = 0.7 
of  d2q9i, if the tolerance was set to 10-]2 then it did not reach the steady- 
state. The minimum relative difference between the velocities at two con- 
secutive times steps is 7 . 5 5 e -  13 for initial distribution 1 and 1 .84e-  11 for 
initial distribution 2. Then the relative difference started to grow and even- 
tually reached a nearly periodic state around 2 .0e -2 .  The method is still 
considered stable for this case. On the other hand, for the case u o = 0.6 of  

Table IV. L2 Relat ive  Error of  Ve loc i ty  as Uo Increases, R e = l O 0  a 

u o 0.1 0.2 0.4 0.5 0.6 0.7 0.8 
d2q9 0.428E-02 0.172E-01 0.744E-01 0.128 NaN NaN NaN 
d2q9i 0.595E-03 0.557E-03 0.217E-03 0.949E-03 0.192E-02 0.312E-02 NaN 
d2q9w 0.595E-03 0.557E-03 0.217E-03 0.949E-03 0.192E-02 0.312E-02 NaN 

a NaN (not a number) indicates overflow in the simulation. 
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Table V,  L2 Relat ive  Error  of  Pressure as uo Increases, R e =  100 ~ 
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u o 0.1 0.2 0.4 0.5 0.6 0.7 0.8 
d2q9 0.391E--02 0 .188E-01 0.920E-01 0.173 NaN NaN NaN 
d2q9i 0 .123E-02  0 .265E-02  0 .103E-01 0.159E-01 0.224E-01 0.295E-01 NaN 
d2q9w 0 .123E-02  0.265E--02 0.103E-01 0.159E--01 0.224E-01 0.295E--01 NaN 

NaN (not a number) indicates overflow in the simulation. 

d2q9 with initial distribution 1, the minimum relative difference between 
the velocities at two consecutive time steps was only 3 .20e-3 and the 
solution became unstable later. Hence, d2q9i has a slightly better stability 
than d2q9. We also studied the case of Re=100,  nx=ny=32, u0=0.1 
(r = 0.596), tolerance of 10 -20 with d2q9i. In this case, the steady state was 
never reached. The difference between the velocities at two consecutive time 
steps reached a minimum of 2 .18e-14 and then it grew and eventually 
settled down around 4 .0e -3  with a periodic behavior. The solution for the 
case with the same parameters except Re = 20 settled down to the steady 
state with the relative difference around 10 -~5. 

From these examples, it is seen that the solution can approach the 
steady-state solution and then diverge from it. How close the solution gets 
to the state-state solution depends on the parameters. An explanation for 
this behavior is that the steady state solution of Eq. (18) is a unstable fixed 
point of the dynamical system for a range of parameters. This unstable 
fixed point behaves like a saddle point. However, a full study of these 
effects is beyond the scope of this paper. 

Table VI.  T ime Steps to  Reach Steady  Sta te  as u 0 Increases, R e =  100 a 

u0 0.1 0.2 0.4 0.5 0.6 0.7 0.8 
d2q9(I.D. 1 ) 8902 5493 4212 NaN NaN NaN 
d2q9(I.D. 2) 22907 12246 6937 5931 NaN NaN �9 NaN 
d2q9i(I.D. 2) 8825 4806 3315 3013 2630 2188 2715 
d2q9i(I.D. 2) 22908 12242 6886 5881 5275 4891 NaN 

a I.D. 1, 2 represent initial distributions I and 2, respectively. 

822/81/1-2-4 
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Some studies were carried out to study the effect of changes in density. 
For this purpose, we tried another model, which is also based on the 
LBGK equation, Eq. (18), with the following equilibrium distribution: 

f(0o) = 4[p _ ~ poW" w] 

f(o) l[p+3poe,, w+9po(e,, w)2---~pow'w] (25) 
I i  = " " 

f(o) ~[p+3poe2, w+~po(e2,.w) 2 -~poW'W] 
2 i  = " - -  

The structure of f ~ )  is similar to that of d2q9 with 

# i cr i a i # i 

and g,j is given in Eq. (19) with p being replaced by Po. The velocity is 
represented by w, and the macroscopic equation in the steady case for his 
model is 

V- w = 0  + O(J 2) (27) 

( ) " P +-----~JOpOpw~,+O(J 2) (28) adw~wp)= -O~ c; ~o 

The results for the model d2q9w are listed in Tables IV and V for the same 
parameters. The relative errors of velocity and pressure in d2q9w are iden- 
tical to those in d2q9i. We note that in the incompressible NS equation 
with constant density, P0 is not a relevant variable and can be absorbed 
into pressure to form an effective pressure /~-P/Po.  In d2q9 and d2q9w, 
we use c2(p-po)/Po=ff  while in d2q9i, we use c2(p-Po)  =ft. With this in 
mind, we observed the following: 

1. In models d2q9 and d2q9w, a scaling of Po amounts to scaling 
f(o) f and p for fixed velocity and effective pressure ft. The scaled ~ , .  #i, J ~; f(o) and 
f#~ still satisfy the LBGK equation (18). Any change in Po does not change 
the velocity or effective pressure. Hence, Po is an irrelevant parameter for 
both the d2q9 and d2q9w models. 

2. For models d2q9i with f .  f(o) corresponding to Po, P, and 
velocity v, if Po is changed to Po + Ap, where Ap is a constant, and new 
distribution functions f , ; ,  f(o) j , ;  are defined as 

~ , = f o i w t ~ A p ;  J?(~176 - ~ ~, to = 4  , t l = ~ ,  t ,=~_  (29) 

then f ~  and _,,~?(~ still satisfy the LBGK equation (18), giving the same 
velocity and effective pressure. That is, the change of Po does not affect the 
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velocity and effective pressure. Hence, Po is also an irrelevant parameter  for 
the d2q9i model. 

3. The models d2q9i and d2q9w with the same Uo, r and Po are 
identical if the following normalized distribution f~; is used: for d2q9i, 
f~; is given by Eq. (29) with Ap = - P o ;  for d2q9w, f , i = f , i / p o  - t~ with t ,  
given in Eq. (29). 

The linear stability analysis by Sterling et al. (7) indicates that the 
stability of  d2q9 depends on r, Uo, the ratio between distributions of  rest 
particles and moving particles, and the wavenumber.  The stability of  d2q9 
is independent of  the density. 

5. C O N C L U S I O N  

We have presented an improed L B G K  model for steady incom- 
pressible flows. This model reduces the compressibility error significantly 
and is more robust. 
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